Year One

Addition

Skill	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{align*} & 8=5+3 \tag{5}\\ & 5+3=8 \end{align*}$ Use the part part whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{gathered} 8=?+3 \\ 5+?=8 \end{gathered}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10. This is an essential skill for column addition later.		Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10 . $9+5=14$ $: \frac{11}{1}:$	$7+4=11$ If 1 am at seven, how many more do I need to make 10 ? How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Include missing number questions: $\begin{gathered} 8=?+3 \\ 5+?=8 \end{gathered}$ Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Year One

Subtraction

Skill	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $4-2=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{array}{r} 7-4=3 \\ 16-9=7 \end{array}$
Counting back	08 Move objects away from the group, counting backwards.	\qquad Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

Find the Difference

Make 10	$14-9$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	Jump back 3 first, then another 4 . Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?
Bar model, including the inverse operations	$5-2=3$		8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Year One			
Multiplication			
Skill	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples ($2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$)	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Making equal groups and counting the
total
Skill

Adding multiples of ten

Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square \square+\text { 믐 } & =\text { 믐ㅁ } \end{aligned}$ Children draw representations of H, T and O	$\begin{aligned} & 3+4=7 \\ & \text { leads to } \\ & 30+40=70 \\ & \text { leads to } \\ & 300+400=700 \end{aligned}$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned} \quad$ Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.

Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2－digit numbers	Model using dienes，place value counters and numicon	Use number line and bridge ten using part whole if necessary．	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1－digit numbers	 Combine to make 10 first if possible，or bridge 10 then add third digit	Regroup and draw representation． $+\cos ^{\infty}=15$	

Year Two			
Subtraction			
Skill	Concrete	Pictorial	Abstract
Regrop aten into ten ones		$\begin{aligned} & \text { k줄 } \\ & 20-4= \end{aligned}$	$20-4=16$
Patitioning to subtract without regovinn? Friendy numbers'		$\begin{aligned} & \text { Childsen draw representations of ofienes and } \\ & \text { cross off. } \\ & 43-21=22 \end{aligned}$	$43-21=22$

Year Two

Multiplication

Skill	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.

| Counting in multiples of
 $2,3,4,5,10$ from 0
 (repeated addition) | Count the groups as children are
 skip counting, children may use
 their fingers as they are skip
 counting. Use bar models. |
| :--- | :--- | :--- | :--- | :--- |
| Nomber lines, counting sticks and bar | |
| models should be used to show | |
| representation of counting in multiples. | | Count in multiples of a number aloud.

Using the Inverse This
should be taught
alongside division, so
pupils learn how they
work alongside each
other.

Year Two

Division

Skill	Concrete	Pictorial	Abstract
Grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$

| Arrays | Find the inverse of multiplication and
 division sentences by creating eight linking array and use lines to split the array
 number sentences. $7 \times 4=28$
 into groups to make multiplication and division
 sentences
 Link division to multiplication by creating an
 array and thinking about the number |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Eg $15 \div 3=5 \quad 5 \times 3=15$ | |

Year Three

Addition

Skill	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	 Dienes or numicon Add together the ones first, then the tens. Move to using place value counters	Children move to drawing the counters using a tens and one frame.	$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$ Add the ones first, then the tens, then the hundreds.

Column Addition with regrouping.

Year Three

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Skill \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Subtract numbers mentally, including: \\
Three digit number + ones \\
Three digit number + tens \\
Three digit number + hundreds
\end{tabular} \& \& \& \begin{tabular}{l}
Vary the position of the answer and question. \\
Expose children to missing number questions and vary the missing part of the calculation.
\[
\begin{gathered}
678=?-1 \\
688-10=? \\
678=?-100
\end{gathered}
\]
\end{tabular} \\
\hline Column subtraction without regrouping (friendly numbers) \& Use base 10 or Numicon to model \& \& \(47-24=23\)

$-\frac{420+7}{20+3}$

\hline
\end{tabular}

Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	$$ $\begin{array}{ccc} 728-582=146 \\ 6 & & 4 \\ { }^{7} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$	Begin by partitioning into pv columns Then move to formal method.

Year Three			
Mulipication			
Skill	Concrete	Pictorial	Abstract
Grid method, progressing to the formal method Multiply 2 digit numbers by 1 digit numbers	Show the links with arrays to first introduce the grid method. Move onto base ten to move towards a more compact method. Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126. Add up each column, starting with the ones making any exchanges needed Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. Bar model are used to explore missing numbers $4 x$ \square $=20$	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$ Move forward to the formal written method:

Year Three

Division

Years Four-Six

Addition

Skill	Concrete	Pictorial	Abstract
Y4-add numbers with up to 4 digits	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	\bullet \ddots $\bullet \bullet$ \ddots \bullet \bullet 0 $\because \bullet$ $\bullet \bullet$ \bullet $\ddots \because$ \ddots \ddots 7 1 5 1 \bullet \bullet Draw representations using place value grid.	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.		$2.37+81.79$ tens onas tents hundredys 00 000 00000 00000 0 $0<$ 00 000 000 000 00000	$\begin{array}{r} 72.8 \\ +54.6 \\ \hline \frac{127.4}{1 .} \\ \hline 11 \\ \\ \\ \\ \\ \\ \\ \\ \hline \end{array}$

Years Four-Six

Subtraction

Skill	Concrete	Pictorial	Abstract
Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money.	$234-179$ Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw PV counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3 decimal places	See Year 4	Children to draw pv counters and show their exchange-see Y3	

Years Fournsix					
Multiplication					
Skill	Concrete	Pictorial	Abstract		
Grid method recap, following onto formal three-digit by onedigit column multiplication	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each colt ves making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	$210+35=245$		

Column Multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	\times 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	
Column multiplication for $3 / 4$ digit numbers	 It is important at this stage that they always Multiply the ones first. Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$	x 300 20 7 4 1200 80 28	

Short Division

Long Division (Year 5/6)

Long division can be taught as an extension in Year 5, and should be taught in Year 6.
\(36 \begin{array}{r}67

\)| 2412 |
| :---: |
| $216 \downarrow$ |
| 252 |

$\frac{252}{000}\end{array}$

