Addition

Skill	Concrete	Pictorial	Abstract
		r ictoriai	Abstract
Combining two parts to make a whole: part- whole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. 8 1 3 part whole 2 2 Balls	8 = 5 + 3 5 + 3 = 8 Use the part part whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: 8 = ? + 3 5 + ? = 8
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	12 + 5 = 17 Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10.

This is an essential skill for column addition later.

6 + 5 = 11

Start with the bigger number and use the smaller number to make 10.

Use ten frames.

Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10.

7 + 4= 11

If I am at seven, how many more do I need to make 10? How many more do I add on now?

Represent & use number bonds and related subtraction facts within 20

2 more than 5.

Include missing number questions:

$$8 = ? + 3$$

$$5 + ? = 8$$

Emphasis should be on the language

'1 more than 5 is equal to 6.'

'2 more than 5 is 7.'

'8 is 3 more than 5.'

Subtraction

Skill	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	7—4 = 3
	4-2=2 6-4=2	\(\frac{1}{4}\) \(\frac{1}{4}	16—9 = 7
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

	1		
Find the Difference	Compare objects and amounts 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister' 5 Pencils Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part-Part-Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. 5 12 Include missing number problems: 12 - ? = 5 7 = 12 - ?

Make 10	14—9 Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	13 – 7 = 6 – 4 – 3 13 – 4 – 3 13 – 7 Jump back 3 first, then another 4. Use ten as the stopping point.	How many do we take off first to get to 10? How many left to take off?
Bar model, including the inverse operations	5-2=3		8 2 10 = 8 + 2 10 = 2 + 8 10-2 = 8 10-8 = 2

Multiplication

Skill	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers	Partition a number and then double each part before recombining it back together.
	double 4 is 8 4 × 2 = 8 + = = = = = = = = = = = = = = = = = =	Double 4 is 8	16 10 6 1x2 1x2 20 + 12 = 32
Counting in multiples (2s, 5s, 10s)	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30

Making equal groups and counting the total	x = 8 Use manipulatives to create equal groups.	Draw of to show 2 x 3 = 6 Draw and make representations	2 x 4 = 8
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15	Write addition sentences to describe objects and pictures. 2 + 2 + 2 + 2 + 2 = 10
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understanding	$3 \times 2 = 6$ $2 \times 5 = 10$

Division

Skill	Concrete	Pictorial	Abstract
Sharing		Children use pictures or shapes to share quantities. 8 shared between 2 is 4 Sharing: 12 shared between 3 is 4	12 shared between 3 is 4
Sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. 8 + 2 = 4 Children use bar modelling to show and support understanding.	12 ÷ 3 = 4

Grouping

Divide quantities into equal groups.

Use cubes, counters, objects or place value counters to aid understanding.

Use number lines for grouping

$$12 \div 3 = 4$$

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

$$28 \div 7 = 4$$

Divide 28 into 7 groups. How many are in each group?

Year Two

Addition

Skill	Concrete	Pictorial	Abstract
Adding multiples of ten	50= 30 = 20 Model using dienes and bead strings	3 tens + 5 tens =tens 30 + 50 = Use representations for base ten.	20 + 30 = 50 70 = 50 + 20 40 + \square = 60
Use known number facts Part, part whole	Children explore ways of making numbers within 20	20	Explore commutativity of addition by swapping the addends to build a fact family. Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations.

Using known facts		$\begin{array}{cccc} \cdot \cdot & + \cdot \cdot \cdot & = & \cdot \cdot \cdot \\ & & & & & & & \\ & & & & & & &$	3 + 4 = 7 leads to 30 + 40 = 70 leads to 300 + 400 = 700
Bar model	3 + 4 = 7	7 + 3 = 10	23 25 ? 23 + 25 = 48
Add a two digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model. 17 + 5 = 22 16 + 7 16 + 7 16 + 20 20 20 21	Explore related facts 17 + 5 = 22 5 + 17 = 22 22-17 = 5 22-5 = 17 Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.

Add a 2 digit number and tens	25 + 10 = 35 Explore that the ones digit does not change	27 + 30 +10 +10 +10 	$27 + 10 = 37$ $27 + 20 = 47$ $27 + \square = 57$
Add two 2-digit numbers	Model using dienes , place value counters and numicon	+20 +5 Or +20 +3 +2 47 67 72 47 67 70 72 Use number line and bridge ten using part whole if necessary.	25 + 47 $20 + 5 40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation. + = 15	

Year Two

Subtraction

Skill	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	20 – 4 =	20—4 = 16
Partitioning to subtract without regrouping. 'Friendly numbers'	34—13 = 21 Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. 43—21 = 22	43—21 = 22

Make ten strategy

Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.

34-28

Use a bead bar or bead strings to model counting to next ten and the rest.

Use a number line to count on to next ten and then the rest.

Year Two

Multiplication

Skill	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters. 40 + 12 = 52	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together. $ \begin{array}{cccccccccccccccccccccccccccccccccc$

Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)

Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.

Number lines, counting sticks and bar models should be used to show representation of counting in multiples.

Count in multiples of a number aloud.

Write sequences with multiples of numbers.

Multiplication is commutative

Create arrays using counters and cubes and

Numicon.

Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.

Use representations of arrays to show different calculations and explore commutativity.

$$12 = 3 \times 4 \ 12 = 4 \times$$

3

Use an array to write multiplication sentences and reinforce repeated addition.

$$5 + 5 + 5 = 15$$

$$3 + 3 + 3 + 3 + 3 = 15$$

$$5 \times 3 = 15$$

$$3 \times 5 = 15$$

Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.

2 x 4 = 8
4 x 2 = 8
8 ÷ 2 = 4
8 ÷ 4 = 2
8 = 2 x 4
8 = 4 x 2
2 = 8 ÷ 4
4 = 8÷ 2
Show all 8 related fact family sentences.

Year Two

Division

Skill	Concrete	Pictorial	Abstract
Grouping	Use cubes, counters, objects or place value counters to aid understanding.	Continue to use bar modelling to aid solving division problems.	How many groups of 6 in 24?
		20 ? 20 ÷ 5 = ?	24 ÷ 6 = 4
	24 divided into groups of $6 = 4$ $96 \div 3 = 32$	5 x ? = 20	

Arrays Find the inverse of multiplication and Draw an array and use lines to split the array into groups to make multiplication and division division sentences by creating eight linking sentences number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ Link division to multiplication by creating an $28 \div 4 = 7$ array and thinking about the number $28 = 7 \times 4$ sentences that can be created. $28 = 4 \times 7$ $4 = 28 \div 7$ Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $7 = 28 \div 4$ $15 \div 5 = 3$ $3 \times 5 = 15$

Year Three

Addition

Skill	Concrete	Pictorial	Abstract
Column Addition—no regrouping (friendly numbers) Add two or three 2 or 3digit numbers.	Add together the ones first, then the tens. Tens Units Tens Units Add together the ones first, then the tens.	Children move to drawing the counters using a tens and one frame. Tens ones	ADSTRACT 2 2 3 + 1 1 4 3 3 7 Add the ones first, then the tens, then the hundreds.
	Move to using place value counters		

Column Addition with regrouping. Estimate the answers to questions and use inverse operations to check answers

Exchange ten ones for a ten. Model using numicon and place value counters.

$$46 + 27 = 73$$

Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line

60 536 Start by partitioning the numbers before

formal column to show

the exchange.

Estimating 98 + 17 = ?100 + 20 = 120

Use number lines to illustrate estimation.

Building up known facts and using them to illustrate the inverse and to check answers:

20

$$116 - 18 = 98$$

$$18 + 98 = 116$$

$$116 - 98 = 18$$

Year Three

Subtraction

Skill	Concrete	Pictorial	Abstract			
Subtract numbers mentally, including: Three digit number + ones Three digit number + tens Three digit number + hundreds	000000000	90 90 100	Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $678 = ? - 1$ $688 - 10 = ?$ $678 = ? - 100$			
Column subtraction without regrouping (friendly numbers)	47—32 Use base 10 or Numicon to model	Draw representations to support understanding	$47 - 24 = 23$ $-\frac{40 + 7}{20 + 3}$ Intermediate step may be needed to lead to clear subtraction understanding. 32 -12 20			

Column subtraction with regrouping

Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.

Children may draw base ten or PV counters and cross off.

Begin by partitioning into pv columns

Then move to formal method.

Year Three

Multiplication

Calculations 4 x 126

Grid method, progressing to the formal method

Multiply 2 digit numbers by 1 digit numbers

Skill

Concrete

Show the links with arrays to first introduce the grid method.

Move onto base ten to move towards a more compact method.

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed

Pictorial

Children can represent their work with place value counters in a way that they understand.

They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.

Bar model are used to explore missing numbers

Abstract

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

×	30	5
7	210	35

$$210 + 35 = 245$$

Move forward to the formal written method:

Year Three

Division

Addition

Y6—add several numbers of increasing complexity,	Insert zeros for place holders.
including adding money, measure and decimals with different numbers of decimal points.	81,059 3,668 15,301 + 20,551 1 20,579

Subtraction

Skill	Concrete	Pictorial	Abstract
Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money.	234 - 179 O O O O O O O O O O O O O O O O O O O	Children to draw PV counters and show their exchange—see Y3	2
Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3 decimal places	See Year 4	Children to draw pv counters and show their exchange—see Y3	28,928 Use zeros for placeholder s.

Year 6—Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	See Year 4	Children to draw pv counters and show their exchange—see Y3	"X" \$ 10,699 - 89,949 60,750						
			1/10/15 · 3/4/1 9 kg - 36 · 080 kg 69 · 339 kg						

Multiplication

Column multiplication (long)			1	8	18 x 3 on the first row
		×	5 2	3	(8 x 3 = 24, carrying the 2 for 20, then 1
		1		0	x 3)
		2	3	4	18 x 10 on the 2nd row. Show
		7	23 4 4 3 4 7 4	6 40	multiplyi ng by 10 by putting (1234 × 6) zero in (1234 × 10) units first
Multiplying decimals up to two decimal places by a single digit		n the units	colu	mn. Li	the single digit belongs ne up the decimal and the answer.
		× 2	3 8 5		52

Division

Long Division (Year 5/6)

Long division can be taught as an extension in Year 5, and should be taught in Year 6.

