Curriculum Overview: Mathematics

Mathematics

At St Peter and St Paul's, we promote a positive, can-do approach to learning, through which the pupils are able to feel confident exploring and developing their skills in Mathematics. We actively seek to dispel myths such as 'some people just can't do maths', and aim to instil within every child an understanding of themselves as mathematicians. We follow a mastery approach, building a strong foundation of understanding and a clear grasp of the number system, which follows each child throughout their mathematics education and underpins all the learning they do during their time in primary school and beyond.

We use the mastery approach to teaching mathematics, which centres around the NCETM's 'Five Big Ideas':

Coherence

Teaching is designed to enable a coherent learning progression through the curriculum, providing access for all pupils to develop a deep and connected understanding of mathematics that they can apply in a range of contexts.

Representation and Structure

Teachers carefully select representations of mathematics to expose mathematical structure. The intention is to support pupils in 'seeing' the mathematics, rather than using the representation as a tool to 'do' the mathematics. These representations become mental images that students can use to think about mathematics, supporting them to achieve a deep understanding of mathematical structures and connections.

Mathematical Thinking

Mathematical thinking is central to how pupils learn mathematics and includes looking for patterns and relationships, making connections, conjecturing, reasoning, and generalising. Pupils should actively engage in mathematical thinking in all lessons, communicating their ideas using precise mathematical language.

Fluency

Efficient, accurate recall of key number facts and procedures is essential for fluency, freeing pupils' minds to think deeply about concepts and problems, but fluency demands more than this. It requires pupils to have the flexibility to move between different contexts and representations of mathematics, to recognise relationships and make connections, and to choose appropriate methods and strategies to solve problems.

Variation

The purpose of variation is to draw closer attention to a key feature of a mathematical concept or structure through varying some elements while keeping others constant.

- Conceptual variation involves varying how a concept is represented to draw attention to critical features. Often more than one representation is required to look at the concept from different perspectives and gain comprehensive knowledge.
- Procedural variation considers how the student will 'proceed' through a learning sequence. Purposeful changes are made in order that pupils' attention is drawn to key features of the mathematics, scaffolding students' thinking to enable them to reason logically and make connections.

Teachers draw from a wide range of teaching resources, including the NCETM Master Resources, White Rose and $\underline{\text { NRich. Pupils are also given bespoke resources, targeted at }}$ their areas for development, to ensure that their individual needs are being met.

Curriculum Overview: Mathematics

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
					1/2 1/4	
	Number	Number	Multiplication and Division	Multiplication and Division	Fractions	Measure
	Composition of 100 Bridging 100 Three digit numbers Vocabulary (in addition to previous year's vocabulary): Add on, count on, count back, bridging, number bonds, hundreds, thousands, estimate, exchange, approximately,	Addition and Subtraction Securing mental calculations to 999 Multiplication and Division 2, 4 and 8 times table and the relationship Vocabulary (in addition to previous year's vocabulary): counting on, counting back, find the difference, less than, more than, minus, thousands, sets of, groups of, counting in...	2,4 and 8 times table srelationship $3 x$ table Vocabulary (in addition to previous year's vocabulary): multiple, multiplication, commutative principle, doubling, halving, equivalent Column Addition	3,6,9x relationships.	Unit fractions Non-unit fractions Adding and subtracting fractions within 1	Time Vocabulary (in addition to previous year's vocabulary): month, year,
				vocabulary): counting on, counting back, find the difference, less than, more than, minus, thousands, sets of, groups of, counting in..., commutative principle, multiple	Vocabulary (in addition to previous year's vocabulary): equal parts, whole, unit fraction, nonunit fraction, integer, numerator, denominator,	midnight, midday, am, pm, duration, estimate, consecutive, hour, minute, second, past to, end, start, digital, analogue, elapsed Measure
				multiple Column Subtraction	represent, share, group, mixed number, whole number, divide, set, multiple, tenth, interval	Measure Length, Mass and capacity
			Length and Perimeter Angles Vocabulary (in addition to previous year's vocabulary): length, width, height, perimeter, total sides, acute, obtuse,	Shape Properties of 2D and 3D shapes Vocabulary (in addition to previous year's vocabulary): 2D, 3D,	Measure Time Vocabulary (in addition to previous year's vocabulary): month, year, midnight, midday, am, pm,	Vocabulary (in addition to previous year's vocabulary): mass, weigh, measure, capacity, scale, gram, kilogram, interval, convert, centimetre, meter, millimetre Statistics
					consecutive, hour, minute, second, past to, end, start, digital, analogue, elapsed	Interpreting and representing data on graphs and charts

Curriculum Overview: Mathematics

Notes:

- In Year 3, children will begin to move onto using column methods for addition and subtraction, once a clear understanding of using partitioning, concrete and pictorial methods and bridging 10/100 has been achieved
- In the summer term, children will be learning about time, including how to tell the time on an analogue and digital clock
- Children will develop their times table knowledge, and will be able to recall multiplication and division facts for the 2, 3, 4, 5, 8, 10 and 11 times tables.
- Evidence of mathematical understanding and application will be seen in evidence across a range of curriculum subjects

Curriculum Overview: Mathematics

Curriculum Overview: Mathematics

Notes:

- In Year 4, children will consolidate their understanding of using the column method for addition and subtraction, and will able to use short methods for multiplication and division
- Roman numerals will be taught in conjunction with the Romans topic
- Statistics and tables will be taught and applied in Science, but may be supplemented in Maths lessons
- Children will be fluent in their multiplication tables and will be able to recall all multiplication facts up to 12×12, with division facts

Curriculum Overview: Mathematics

Notes:

- In Year 5, children will consolidate their understanding of the four operations, and apply them, using formal written methods, to context-based problems (including two-step word problems)
- Children will build on what they have learnt about fractions, and develop an understanding of fraction arithmetic and problem solving using fractions, decimals and percentages - they will be confident in solving addition and subtraction problems involving like and unlike fractions
- Statistics will be taught across the Science units

Curriculum Overview: Mathematics

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Number	Multiplication and Division	Four Operations in context	Multiplication and Division	Problems with two unknowns	Problem Solving and Investigations
	Ordering and sequences, including with decimals	Strategies for larger numbers and long multiplication.	Vocabulary (in addition to previous year's vocabulary): Order of operations, BIDMAS	Mean average Ratio and proportion	Properties of Shape Angles in triangles/ straight lines/ quadrilaterals.	
	Rounding, including with decimals	Fractions	Fractions in context	Scale factors	Draw shapes accurately.	
	Negative Numbers	Multiplying and dividing fractions		Vocabulary (in addition to previous year's vocabulary): mean,	Statistics	
	Addition and Subtraction	Vocabulary (in addition to previous year's	Algebra	average, scaling, ratio, proportion	Line graphs Pie Charts	
	Composition and calculation to 10 million.	vocabulary): Common factor, highest common factor, whole number, integer	Formulas and equations Simplifying formula Missing value Nth Term - rules and sequences	Measure Area and Perimeter	Analysing data Noticing trends Extrapolating and interpolating	
		Percentages	Vocabulary (in addition to previous year's vocabulary): rule, expression, substitute, formula, equation Ratio and Proportion	(including triangles, parallelograms, circles) Volume Vocabulary (in addition to previous year's vocabulary): Vertically opposite angles, radius, concentric, diameter, circumference, net	Vocabulary (in addition to previous year's vocabulary): pie chart, line graph, trend, extrapolate, interpolate, x and y axis/axes	

Curriculum Overview: Mathematics

Notes:

- In Year 6, children will consolidate their understanding of all formal written methods for arithmetic, including those relating to fractions, decimals and percentages
- They will build upon a strong foundation of core number knowledge and apply this understanding when solving more complex reasoning problems, including those that require multiple steps, and those that draw upon facets of multiple areas of mathematics
- They will be able to explain their reasoning fluently, using mathematical vocabulary, pictorial representations and formulae.

